Long intronic GAA•TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia

نویسندگان

  • E. Soragni
  • D. Herman
  • S. Y. R. Dent
  • J. M. Gottesfeld
  • R. D. Wells
  • M. Napierala
چکیده

Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation

Friedreich ataxia is a degenerative disease caused by deficiency of the protein frataxin (FXN). An intronic expansion of GAA triplets in the FXN-encoding gene, FXN, causes gene silencing and thus reduced FXN protein levels. Although it is widely assumed that GAA repeats block transcription via the assembly of an inaccessible chromatin structure marked by methylated H3K9, direct proof for this i...

متن کامل

Molecular and Clinical Investigation of Iranian Patients with Friedreich Ataxia

Background: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable ...

متن کامل

Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells.

Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats a...

متن کامل

MINIREVIEW: Repeat-mediated epigenetic changes -1- CHROMATIN REMODELING IN THE NON-CODING REPEAT EXPANSION DISEASES

Friedreich ataxia, myotonic dystrophy type 1, and 3 forms of intellectual disability, Fragile X syndrome, FRAXE mental retardation and FRA12A mental retardation are Repeat Expansion Diseases caused by expansion of CTG•CAG, GAA•TTC, or CGG•CCGrepeat tracts. These repeats are transcribed, but not translated. They are located in different parts of different genes and cause symptoms that range from...

متن کامل

Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich’s ataxia

Friedreich's ataxia (FRDA) is caused by biallelic expansion of GAA repeats leading to the transcriptional silencing of the frataxin (FXN) gene. The exact molecular mechanism of inhibition of FXN expression is unclear. Herein, we analyze the effects of hyperexpanded GAA repeats on transcription status and chromatin modifications proximal and distal to the GAA repeats. Using chromatin immunopreci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008